
Faculty of Engineering!
Department of Systems Design Engineering!!!!!!!!!!!!!!

NengoAR: A Neural 
Quadcopter Control System"!!!!

A Report Submitted in Partial Fulfillment of the Requirements For SYDE 556!!!!!!!
April 24, 2014!

Course Instructor: Dr. Terry Stewart!!!!!!!!
Chris Vandevelde, #20316110!

4B Systems Design Engineering  

Introduction"
This report describes an effort to use a neural simulation framework as a control system
to a commercial-grade quad-rotor helicopter (“quadcopter”), a type of drone which has
recently become popular as both hobbyist and commercial or industrial Unmanned
Aerial Vehicles (UAVs). The goal of the project was to determine the feasibility of a
neural framework for use for control systems, and what impact neural representations of
those controls would have in the performance.!!
A Parrot AR Drone was used for the quadcopter in this project, which allowed for quick,
cheap prototyping of the control algorithm as well as a low overhead cost of hardware. It
was thankfully durable enough to survive this testing phase, as the development
process involved a large amount of manually-tweaking control parameters through test
flights. The slightest error in control would send the drone out of stable flight and cause
a crash - there were many flight logs recorded over the duration of this project which
end in an unstable crash.!!
While the control algorithms that power the AR Drone in its production state are
complex and incorporate many sources of information and stability controls, it will be
determined if such complexity is needed or is just a consequence of the precision and
rigour required in the math necessary to describe the system. 

System Description"
The system comprises both hardware and software in order to mimic a real-world
application of a neural system. The simulated brain is running on a computer and
communicates with a quadcopter over Wi-Fi to control it.!

Quadcopter"
The quadcopter in use is a Parrot AR Drone, a commercial quad-rotor helicopter
designed for hobbyist use and for sale to the public [1]. It has four independently-
controlled rotors which allow for full three-dimensional flight through an onboard control
system, run through a miniature onboard PC. It includes a variety of onboard sensors
which feed into this PC, and has two cameras for downward and forward vision.!

Figure 1: The Parrot AR Drone with the foam indoor shield around the propellors.!!
Controls"
The Parrot AR Drone’s control system is quite complex, and incorporates data from a
variety of sensors including ultrasonic distance estimation, an accelerometer, a Global
Positioning System (GPS) receiver, as well as computer vision techniques for object
recognition and tracking. !!
Though its interface is typically controlled via basic commands, designed for control via
a joystick-style interface, there have been several attempts [2] [3] [4] to extend its
control beyond simple applications and into more complex aerobatics.!

Communication"
The Parrot AR Drone communicates via Wi-Fi connection, accepting commands on one
port, reporting status on another, and feeding live video through a third. It emits regular
packets of information which includes velocity in three dimensions, the status of the
Euler angles, the altitude, and some internal details. The status packets follow the
following format - phi, psy and theta being the Euler angles, vx, vy, and vz being the
velocity in the Cartesian directions, battery and altitude being relatively self-
explanatory, and num_frames being the number of video frames processed to calculate

the data, and ctrl_state representing various details about the state of the controller
algorithm.!!
{	
	 	 	 	 	 	 'phi':	 3,	
	 	 	 	 	 	 ‘psi':	 3,	
	 	 	 	 	 	 ‘num_frames':	 383,	
	 	 	 	 	 	 ‘battery':	 50,	
	 	 	 	 	 	 ‘altitude':	 221,	
	 	 	 	 	 	 ‘ctrl_state':	 131072,	
	 	 	 	 	 	 ‘vx':	 0.0,	
	 	 	 	 	 	 ‘vy':	 0.0,	
	 	 	 	 	 	 ‘vz':	 0.0,	
	 	 	 	 	 	 ‘theta':	 7	
}	

Neural Representation"
The system is comprised of five Ensembles, each representing a different quantity in
the brain, broken up into three categories: position (position vectors, or point
coordinates), trajectory (a direction vector), and motor control (a vector of power levels
to each motor).!

Position"
The first two hold the goal position and current position as three-dimensional vectors,
comprised of 100 neurons with a radius of 10. The goal position is a simple static input
read from a CSV file which is used to hold the path the quadcopter should take. The
current position ensemble starts at (0, 0, 0) and begins to move with input from the
quadcopter’s state information. Every time the state is polled, it returns a vector
representing its velocity, which is multiplied by the time difference and added to the
current state to represent the new position.!!
To hold the current state, an integrator connection was created to keep the value
constant, changing only with the differential input. When this was introduced, the current
position began to drift toward certain points due to attractor noise, but a modification of
the transfer function was made to corrected this error, stabilizing the position from such
drift error (see sub-section “Drifting” in the Implementation section, below).!

Trajectory"
The second two are tasked with calculating and holding the trajectory, or the vector
leading from the current position to the goal position calculated by vector difference.
Two ensembles are needed for calculating the difference; the first to combine the values
into one vector, the second to find the difference between the two sections of that
vector.!

Motor Control"
The last ensemble holds a vector containing four power ratios which will be sent to each
motor. Through testing (see Implementation section, below) it was determined that the

values range from 0 (motors off), to 500 (motors at highest power), with 250 being the
“hovering power.” Thus, if all motors are set to 250, the quadcopter will hover in place.!!
The function to calculate the powers is based on the trajectory vector, and uses the
positions of each motor to induce functions which will move the quadcopter in each
cardinal direction. For example, to move in the positive z-direction, all motors should
increase their power. The transformation function is described in more detail in the
Implementation section, below.!

Design Specification"
As there are (unfortunately) no natural quad-rotor helicopter beings in nature, a search
for studied properties of neural ensembles which make up a control system for quad-
rotor locomotion turned up no results. Even rotor-based propulsion as seen in
helicopters are absent in nature, evolution having favoured flapping wings over spinning
propellors. However, the flight characteristics which helicopters are favoured for (the
ability to hover and free-flight in all three dimensions) are also desired by some animals
in the wild. As such, there are some animals in the wild who have similar flight patterns
to a quad-rotor copter, and can be used for inspiration towards a model for neural
representation of a suitable control system. Each of these were investigated for
specifications which could be used.!!
In general, the hippocampus is the area most associated with spatial cognition and
navigation, so this project replicates a simplistic hippocampus made up of a fraction of
the neurons in a typical animal. Common hippocampus neural types are place cells (for
current location), head-direction cells (for point of view), grid cells (to locate
environmental features in a hexagonal grid), and border cells (to denote divisions
between environments) [5].!

Birds"
Birds were the first subject of inquiry, being the first thing brought to mind when “animals
that fly” are considered. Neural representations of spatial position, orientation, and path
have been characterized, and a variety of sensory systems are being used, each
contributing a slightly-different representation in various settings. They have a strong
sense of direction, even estimated to have a genetic sense of direction and distance for
migratory patterns, so they can find winter breeding grounds without any previous
experience [6]. Evidence from studies recording in homing pigeons indicated firing rates
of 0 - 3Hz for place cells and 0 - 30Hz for path cells, with neurons highly localized to
specific locations in the environment [7].!

Hummingbirds"
Hummingbirds have a very specific flight style, characterized by high-speed wing-
flapping and high precision, allowing for a variety of flight patterns. They have the ability
to hover in place and dart around freely in three dimensions, very similarly to helicopters
and quadcopters [8]. Their spatial representations have been studied and shown to be
three-dimensional, albeit biased towards horizontal over vertical dimensions [9].!

Insects"
Dragonflies and damselflies are able to fly in a similar manner as hummingbirds, having
the ability to hover and change velocity quickly and precisely. They also have multiple
independent pairs of wings, which can be flapped independently from each other, giving
them another characteristic which mirrors quadcopter flight dynamics [10].!

Implementation"
The neural implementation was done using the latest version of the Nengo software in
Python [11]. Python was chosen for its development speed, easy manipulation of
matrices and vectors through numpy, and large community of developers providing
application libraries for a large variety of applications. It was also chosen due to the
Parrot AR Drone having an avid hobbyist-programmer community, who have created a
slew of libraries to connect and remotely control the drone, including several Python
libraries [12] [13]. In the end, libardrone was chosen due to its proven effectiveness,
open-source license, and small source code base.!!
While libardrone only had a unfinished implementation of a function which allowed for
direct control of the four motors (bypassing the drone’s internal control system),
development was undertaken to determine the parameters required and complete the
functionality. It was found that the inputs take integers between 0 and 500 for power
units, with the middle value of 250 being set to provide 1/4 of the force of gravity on the
drone due to its mass. This way, if all four motors are set to 250, the drone hovers in
place.!

Control Development"
Initial research was done to determine what would be necessary to control an unstable
system such as a quadcopter for stable flight. The control algorithm in the onboard
computer is complex and robust, incorporating data from different sensors to give a
more accurate sense of its current position, velocity, angle, and what needs to be done
to maintain a stable flight pattern [14].!!
While such a control system could be developed, a more simplistic controller was used
to aid development, with the aim of increasing complexity if it was needed. It was also
done in an attempt to see more directly the effect the neural representation would have
on the quadcopter’s behaviour.!

Figure 2: The number system of the quadcopter’s engines.!!
To move to the left, the motors on the right side should increase their power and the
motors on the left side should decrease their power. Similarly, to move forward the
backwards motors should increase power and the forwards motors should decrease
power. The function, taking in v as the vector trajectory.!!

f(v) = { vz + vx - xy, vz - vx - xy, vz + vx + xy, vz - vx + xy } !
Or, in code:! !
engines	 =	 [trajectory[2]	 +	 trajectory[0]	 -‐	 trajectory[1],	
	 	 	 	 	 	 	 	 	 	 	 	 trajectory[2]	 -‐	 trajectory[0]	 -‐	 trajectory[1],	
	 	 	 	 	 	 	 	 	 	 	 	 trajectory[2]	 +	 trajectory[0]	 +	 trajectory[1],	
	 	 	 	 	 	 	 	 	 	 	 	 trajectory[2]	 -‐	 trajectory[0]	 +	 trajectory[1]]	 !
While the amount each motor should move can be tuned to perfectly correspond to
physical units, to keep the system simplest all tuning was left to the control algorithm.
The motors will simply turn a position error (a nonzero trajectory between goal and
current position) into power and move towards the goal at all times.!

Drifting"
To be able to view the performance of the controller, the neural representations were
recorded to Comma-Separated Value (CSV) files, which were then plot in three
dimensions using MATLAB. This allowed for a visualization of how the controller was
performing. As can be seen in Figure 3 below, the initial implementation of the algorithm
had a problem with drift in the current position representation!

Figure 3: The neural representation of the quadcopter’s current position with no input signal. Note the drift
in all three dimensions. Temporally, it starts on the left and moves to stabilize at the bottom-right.!!

This was due to the integrator which was being used to store the quadcopter’s position;
the sensors in the Parrot AR report velocity, which were multiplied by the elapsed time
and integrated into the current position representation. The representation noise
introduced local attractors into the representation, which the position would drift
towards.!!
Unfortunately, this had a rather negative effect on the control algorithm, and introduced
an error into the signal which the system attempted to correct. This caused the
trajectory (and, correspondingly, the direction of the engine power) to drift accordingly,

causing instability and crashing in a random direction every time the algorithm was run.!
Figure 4: The effect of the representation noise, introducing drift on the neural representations of the

current position (and the trajectory, accordingly).!!
As can be seen in Figure 4, the desired position (in green) moves towards its input
signal (the small red circle in the centre) and hovers near the area in a stable position.
The current position (in blue), however, drifts diagonally towards the bottom-right of the
figure before stabilizing at roughly (2.5, 1.8, 0), despite starting at (0, 0, 0) and having
no input. The trajectory, shown in red, moves towards the opposite direction to
compensate for the error and move the current position towards the actual goal.!!
It was assumed that the drift was due to the dynamics of the integrator connection,
owing to its random direction and stabilization at an attractor point, so the transfer

function was changed from f(x) = x to f(x) = τx - x. This compensated for the effect of
the decoding on the signal, which fixed the drifting problem, as seen in Figure 5, below.!

Figure 5: The corrected current position circuit (in blue, stable at (0, 0, 0)) and the desired position and
trajectory (in green and red, correspondingly).!

Turn Scaling"
Through the development process, it was found that much of the instability was due to
highly aggressive turning, so a turn scaling parameter was introduced to allow for
aggressive height manoeuvring but reduce the acceleration in the horizontal plane. This
changed the transfer function to:!!

f(v) = { vz + αvx - αxy, vz - αvx - αxy, vz + αvx + αxy, vz - αvx + αxy } !
And, in code:!!
engines	 =	 [trajectory[2]	 +	 TURN_SCALING*trajectory[0]	 -‐	 TURN_SCALING*trajectory[1],	
	 	 	 	 	 	 	 	 	 	 	 	 trajectory[2]	 -‐	 TURN_SCALING*trajectory[0]	 -‐	 TURN_SCALING*trajectory[1],	
	 	 	 	 	 	 	 	 	 	 	 	 trajectory[2]	 +	 TURN_SCALING*trajectory[0]	 +	 TURN_SCALING*trajectory[1],	
	 	 	 	 	 	 	 	 	 	 	 	 trajectory[2]	 -‐	 TURN_SCALING*trajectory[0]	 +	 TURN_SCALING*trajectory[1]]	 !
When reduced, the difference in engine power was reduced correspondingly, giving an
overall more stable flight path for a given trajectory. However, it did reduce the speed at
which it was able to move in the horizontal plane, and required manual tweaking (or
potentially optimization) to find a balance.!!!

!!!!!!
Figure 6: A comparison showing the difference in engine powers with a turn scaling of 1 (above) and

0.001 (below). Note that the engine values themselves are between different trials, and aren’t just scaled.!

Filtering"
While the goal positions were particularly stable and slow-moving (the goal being
stationary), the trajectory and engine power needed to be quick and responsive to
respond to error and avoid instability. The filtering for the trajectory and engines were
reduced to allow for more quick movement, resulting in more aggressive error
correction.!

 

Results"!

Figure 7: The trajectory and engine power with the more stable constants used.!!
In the end, the quadcopter’s flight was only semi-stable, although able to hover and drift
in a predictable trajectory. The problem of representation drift and accuracy amplified
the problems involved in sustaining flight, but with tweaking of the filtering constants
allowing for more high-frequency signal responses, the quadcopter’s behaviour was
able to stay at least predictable. Unfortunately, at that point the representation noise
levels were also raised, so the accuracy was sacrificed.!

Improvements"
In future iterations, separating different axes for representation would be an interesting
avenue to consider, allowing for different filtering options in different directions similarly
to the separation between goal and trajectory filters. This follows the biological
constraints discussed in the design specification, with vertical resolution being lower
than horizontal, to allow for more precise movement in the horizontal direction.!!
In addition, the complexity of the controller could be increased to give a stronger
response to error. As it stands, the controller is proportional to the error, but a derivative
or integral component could be added to give a more responsive signal - right now the
motors rarely reach anywhere near full power, so there is room for improvement.!!

Conclusion"
Perhaps the most interesting part of the neural control algorithm is how much it
resembled a traditional control algorithm, and suffers from similar problems, albeit low-
pass filtered and noisy. The problems of proportional control are still present in neural
systems, however that indicates that the potential solutions of using more complex
control systems (including derivative and integral control) are also viable.!!
Also interesting was the parallel between the natural world of hummingbirds and
dragonflies and the very unnatural propulsion system of a quad-rotor helicopter. Where
technology mimics nature, advantageous techniques from one can be used in another,
so it is beneficial to study the natural world even in situations which may seem distinct.!!
The ultimate lesson to be learned from this project is that, while a simulated neural
network is a complex and beautiful system, it is the learning and experience which is
built on top of this which is where the true complexity of the brain lies. Not simply in the
design of neurons and spike encoding or decoding, but in the actual weights of the
connections, where the learning itself happens. That complexity, the subtleties of
behaviour, is where instability can be managed and flight brought forth.!!

Works Cited"
1. Parrot SA. AR Drone 2.0. [Online]. Available: http://ardrone2.parrot.com/!
2. Drone Apps. Drone Station for Mac. [Online]. Available: http://drone-apps.com/

drone-station-for-mac/!
3. Parrot SA. Developer Zone. [Online]. Available: http://ardrone2.parrot.com/

developer-zone/!
4. Parrot SA. Apps. [Online]. Available: http://ardrone2.parrot.com/usa/apps/!
5. T. J. Wills, et al., “The development of spatial behaviour and the hippocampal neural

representation of space,” Phil. Trans. R. Soc. vol. 369.!
6. V. Bingman, T. Jechura, & M. C. Kahn, “Behavioral and Neural Mechanisms of

Homing and Migration in Birds,” in Animal Spatial Cognition: Comparative, Neural,
and Computational Approaches, M.F. Brown and R.G. Cook, Eds., 2006. [Online]
Available: http://pigeon.psy.tufts.edu/asc/Bingman/Default.htm!

7. G.E. Hough II and V.P. Bingman, “Spatial response properties of homing pigeon
hippocampal neurons: Correlations with goal locations, movement between goals,
and environmental context in a radial-arm arena,” Journal of Comparative
Physiology A, vol. 190, pp. 1047-1062.!

8. About.com. How Hummingbirds Fly. [Online]. Available: http://birding.about.com/od/
birdbehavior/a/How-Hummingbirds-Fly.htm!

9. I. N. Flores-Abreu et al., “Three-dimensional spatial learning in hummingbirds,”
Animal Behaviour. vol. 85 (2013), pp. 579-584, Jan. 2013. [Online]. Available: http://
rspb.royalsocietypublishing.org/content/281/1784/20140301.abstract!

10. J. M. Wakeline and C. P. Ellington, “Dragonfly Flight II. Velocities, Accelerations and
Kinematics of Flapping Flight,” The Journal of Experimental Biology. vol. 200, pp.
557-582, 1997. [Online]. Available: http://jeb.biologists.org/content/200/3/557.full.pdf!

11. Centre for Theoretical Neuroscience. Nengo: Large-scale brain modelling in Python.
[Online]. Available: https://github.com/ctn-waterloo/nengo!

12. S.D. Levy. AR.Drone AutoPylot - Auto-Pilot the Parrot AR.Drone from Python (or
Matlab or C). [Online]. Available: http://home.wlu.edu/~levys/software/
ardrone_autopylot/!

13. B. Venthur. python-ardrone. [Online]. Available: https://github.com/venthur/python-
ardrone!

14. P. Bristeau et al., “The Navigation and Control technology inside the AR.Drone micro
UAV,” in International Federation of Automatic Control (IFAC) World Congress,
Milano, Italy, 2011, pp.1477-1484. [Online]. Available: http://cas.ensmp.fr/~petit/
papers/ifac11/pjb.pdf 

http://ardrone2.parrot.com/
http://drone-apps.com/drone-station-for-mac/
http://ardrone2.parrot.com/developer-zone/
http://ardrone2.parrot.com/usa/apps/
http://pigeon.psy.tufts.edu/asc/Bingman/Default.htm
http://birding.about.com/od/birdbehavior/a/How-Hummingbirds-Fly.htm
http://rspb.royalsocietypublishing.org/content/281/1784/20140301.abstract
http://jeb.biologists.org/content/200/3/557.full.pdf
https://github.com/ctn-waterloo/nengo
https://github.com/venthur/python-ardrone
http://cas.ensmp.fr/~petit/papers/ifac11/pjb.pdf

Appendix A - Code"
nengoAR.py"
import	 nengo	
import	 libardrone	
import	 numpy	
import	 csv	
import	 time	 !
#	 This	 scales	 the	 velocity	 proportionally	 to	 the	 error.	
#	 Remember,	 velocity	 saturates	 at	 0	 and	 500.	
VELOCITY_SCALING	 =	 0.05	 !
#	 This	 scales	 the	 x-‐	 and	 y-‐	 turning	 velocity	 independently	 from	 the	 lift	
#	 velocity.	 We	 don't	 care	 too	 much	 about	 lift	 and	 drop	 speed,	 but	 if	 it	 turns	
#	 too	 fast	 in	 one	 direction,	 it	 gets	 more	 unstable.	
TURN_SCALING	 =	 0.001	 !
POSITION_FILTER	 =	 0.2	 #	 A	 filter	 for	 the	 position	 signal	 values.	
ENGINE_FILTER	 =	 0.03	 #	 A	 filter	 for	 the	 engine/trajectory	 signal	 values.	 !
MAX_SPEED	 =	 500;	 #	 Constant	 defined	 from	 the	 quadcopter	 itself.	 !
desiredfile	 =	 open('desired.csv',	 'wb')	
desiredwriter	 =	 csv.writer(desiredfile)	 !
currentfile	 =	 open('current.csv',	 'wb')	
currentwriter	 =	 csv.writer(currentfile)	 !
trajectoryfile	 =	 open('trajectory.csv',	 'wb')	
trajectorywriter	 =	 csv.writer(trajectoryfile)	 !
enginesfile	 =	 open('engines.csv',	 'wb')	
engineswriter	 =	 csv.writer(enginesfile)	 !
path	 =	 numpy.genfromtxt('path.csv',	 delimiter=',')	 !
SIMULATE	 =	 False	 !
if	 not	 SIMULATE:	
	 	 	 	 #	 Connect	 to	 the	 quad	 and	 take	 off.	
	 	 	 	 drone	 =	 libardrone.ARDrone()	
	 	 	 	 drone.reset()	 !
#	 Quad	 position	 input.	
def	 path_input(time,	 x):	
	 	 	 	 for	 index,	 point	 in	 enumerate(path):	
	 	 	 	 	 	 	 	 if	 len(path)	 >	 1	 and	 time	 >=	 min(path[index	 -‐	 1][3],	 0)	 and	 time	 <	 point[3]:	
	 	 	 	 	 	 	 	 	 	 	 	 return	 point[:-‐1]	 !
	 	 	 	 #	 If	 we're	 at	 the	 end,	 stay	 at	 the	 last	 point.	
	 	 	 	 return	 path[-‐1][:-‐1]	 !
def	 drone_state(time):	
	 	 	 	 if	 not	 SIMULATE	 and	 drone.navdata.keys():	
	 	 	 	 	 	 	 	 return	 [drone.navdata[0]['vx'],	 drone.navdata[0]['vy'],	 drone.navdata[0]['vz']]	
	 	 	 	 else:	

	 	 	 	 	 	 	 	 return	 [0,	 0,	 0]	 !
def	 send_motors(time,	 motor_values):	
	 	 	 	 if	 not	 SIMULATE:	
	 	 	 	 	 	 	 	 drone.manual(motor_values[0],	 motor_values[1],	 motor_values[2],	 motor_values[3])	
	 	 	 	 engineswriter.writerow([motor_values[0],	 motor_values[1],	 motor_values[2],	
motor_values[3]])	
	 	 	 	 return	 motor_values	 !
def	 power(trajectory):	
	 	 	 	 engines	 =	 numpy.array([trajectory[2]	 +	 TURN_SCALING*trajectory[0]	 -‐	
TURN_SCALING*trajectory[1],	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 trajectory[2]	 -‐	 TURN_SCALING*trajectory[0]	 -‐	
TURN_SCALING*trajectory[1],	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 trajectory[2]	 +	 TURN_SCALING*trajectory[0]	 +	
TURN_SCALING*trajectory[1],	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 trajectory[2]	 -‐	 TURN_SCALING*trajectory[0]	 +	
TURN_SCALING*trajectory[1]])	
	 	 	 	 engines	 =	 (engines*VELOCITY_SCALING)*MAX_SPEED	 +	 MAX_SPEED/2	
	 	 	 	 engines	 =	 numpy.clip(engines,	 0,	 500)	
	 	 	 	 return	 engines	 !
def	 printdesired(time,	 value):	
	 	 	 	 desiredwriter.writerow(value)	
	 	 	 	 return	 value	 !
def	 printcurrent(time,	 value):	
	 	 	 	 currentwriter.writerow(value)	
	 	 	 	 return	 value	 !
def	 printtrajectory(time,	 value):	
	 	 	 	 trajectorywriter.writerow(value)	
	 	 	 	 return	 value	 !
tau	 =	 0.1	
def	 integrator(x):	
	 	 	 	 return	 tau*x	 -‐	 x	 !
def	 difference(x):	
	 	 	 	 return	 numpy.subtract(x[:3],	 x[3:])	 !
#	 Build	 our	 neural	 model.	
model	 =	 nengo.Model('Nengo	 AR	 Brain')	 !
#	 Create	 input	 nodes	 representing	 the	 input	 and	 store	 it	 in	 an	 ensemble.	
path_input	 =	 nengo.Node(output=path_input,	 size_in=3)	
velocity_input	 =	 nengo.Node(output=drone_state,	 size_out=3)	
motor_output	 =	 nengo.Node(send_motors,	 size_in=4)	 !
print_desired	 =	 nengo.Node(printdesired,	 size_in=3)	
print_current	 =	 nengo.Node(printcurrent,	 size_in=3)	
print_trajectory	 =	 nengo.Node(printtrajectory,	 size_in=3)	 !
desired_position	 =	 nengo.Ensemble(neurons=100,	 dimensions=3,	 radius=10)	
current_position	 =	 nengo.Ensemble(neurons=100,	 dimensions=3,	 radius=10)	
trajectory_difference_holder	 =	 nengo.Ensemble(neurons=200,	 dimensions=6,	 radius=10)	
trajectory	 =	 nengo.Ensemble(neurons=300,	 dimensions=3,	 radius=10)	
engine_power	 =	 nengo.Ensemble(neurons=500,	 dimensions=4,	 radius=500)	 !

#	 Store	 the	 other	 values	 in	 neurons.	
nengo.Connection(path_input,	 desired_position,	 filter=POSITION_FILTER)	
nengo.Connection(desired_position,	 print_desired,	 filter=POSITION_FILTER)	 !
#	 Integrate	 the	 velocity	 to	 get	 the	 current	 position.	
nengo.Connection(velocity_input,	 current_position,	 filter=POSITION_FILTER)	
nengo.Connection(current_position,	 current_position,	 function=integrator,	
filter=POSITION_FILTER)	
nengo.Connection(current_position,	 print_current,	 filter=POSITION_FILTER)	 !
#	 Trajectory	 is	 the	 difference	 between	 the	 desired	 and	 current	 position.	
nengo.Connection(desired_position,	 trajectory_difference_holder,	 transform=[[1,	 0,	 0],	 [0,	 1,	
0],	 [0,	 0,	 1],	 [0,	 0,	 0],	 [0,	 0,	 0],	 [0,	 0,	 0]],	 filter=POSITION_FILTER)	
nengo.Connection(current_position,	 trajectory_difference_holder,	 transform=[[0,	 0,	 0],	 [0,	 0,	
0],	 [0,	 0,	 0],	 [1,	 0,	 0],	 [0,	 1,	 0],	 [0,	 0,	 1]],	 filter=POSITION_FILTER)	
nengo.Connection(trajectory_difference_holder,	 trajectory,	 function=difference,	
filter=ENGINE_FILTER)	
nengo.Connection(trajectory,	 print_trajectory,	 filter=ENGINE_FILTER)	 !
#	 Now	 translate	 the	 desired	 trajectory	 into	 engine	 power.	
nengo.Connection(trajectory,	 engine_power,	 function=power,	 filter=ENGINE_FILTER)	
nengo.Connection(engine_power,	 motor_output,	 filter=ENGINE_FILTER)	 !
#	 Create	 our	 simulator	
sim	 =	 nengo.Simulator(model)	
sim.run(5)	 !
if	 not	 SIMULATE:	
	 	 	 	 drone.manual(0,	 0,	 0,	 0)	
	 	 	 	 drone.halt()	

plot_route.m"
current	 =	 csvread('current.csv');	
desired	 =	 csvread('desired.csv');	
trajectory	 =	 csvread('trajectory.csv');	
path	 =	 csvread('path.csv');	
engines	 =	 csvread('engines.csv');	 !
figure;	
hold	 all;	
plot3(current(:,	 1),	 current(:,	 2),	 current(:,	 3));	
plot3(desired(:,	 1),	 desired(:,	 2),	 desired(:,	 3));	
plot3(path(:,	 1),	 path(:,	 2),	 path(:,	 3),	 'rO');	
plot3(trajectory(:,	 1),	 trajectory(:,	 2),	 trajectory(:,	 3));	
legend('Current	 Position',	 'Desired	 Position',	 'Actual	 Goal',	 'Trajectory');	
title('Goal	 Planning');	
xlabel('x');	
ylabel('y');	
zlabel('z');	
view(14,	 -‐14);	 !
figure;	
subplot(2,	 1,	 1);	
plot(engines);	
title('Engine	 Power');	
legend('Engine	 1',	 'Engine	 2',	 'Engine	 3',	 'Engine	 4');	
subplot(2,	 1,	 2);	
plot(trajectory);	

title('Trajectory');	
legend('x',	 'y',	 'z');	
xlabel('Time	 (sample	 index)');	
ylabel('Distance	 (m)');

