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Introduction"
This report describes an effort to use a neural simulation framework as a control system 
to a commercial-grade quad-rotor helicopter (“quadcopter”), a type of drone which has 
recently become popular as both hobbyist and commercial or industrial Unmanned 
Aerial Vehicles (UAVs). The goal of the project was to determine the feasibility of a 
neural framework for use for control systems, and what impact neural representations of 
those controls would have in the performance.!!
A Parrot AR Drone was used for the quadcopter in this project, which allowed for quick, 
cheap prototyping of the control algorithm as well as a low overhead cost of hardware. It 
was thankfully durable enough to survive this testing phase, as the development 
process involved a large amount of manually-tweaking control parameters through test 
flights. The slightest error in control would send the drone out of stable flight and cause 
a crash - there were many flight logs recorded over the duration of this project which 
end in an unstable crash.!!
While the control algorithms that power the AR Drone in its production state are 
complex and incorporate many sources of information and stability controls, it will be 
determined if such complexity is needed or is just a consequence of the precision and 
rigour required in the math necessary to describe the system. 



System Description"
The system comprises both hardware and software in order to mimic a real-world 
application of a neural system. The simulated brain is running on a computer and 
communicates with a quadcopter over Wi-Fi to control it.!

Quadcopter"
The quadcopter in use is a Parrot AR Drone, a commercial quad-rotor helicopter 
designed for hobbyist use and for sale to the public [1]. It has four independently-
controlled rotors which allow for full three-dimensional flight through an onboard control 
system, run through a miniature onboard PC. It includes a variety of onboard sensors 
which feed into this PC, and has two cameras for downward and forward vision.!

Figure 1: The Parrot AR Drone with the foam indoor shield around the propellors.!!
Controls"
The Parrot AR Drone’s control system is quite complex, and incorporates data from a 
variety of sensors including ultrasonic distance estimation, an accelerometer, a Global 
Positioning System (GPS) receiver, as well as computer vision techniques for object 
recognition and tracking. !!
Though its interface is typically controlled via basic commands, designed for control via 
a joystick-style interface, there have been several attempts [2] [3] [4] to extend its 
control beyond simple applications and into more complex aerobatics.!

Communication"
The Parrot AR Drone communicates via Wi-Fi connection, accepting commands on one 
port, reporting status on another, and feeding live video through a third. It emits regular 
packets of information which includes velocity in three dimensions, the status of the 
Euler angles, the altitude, and some internal details. The status packets follow the 
following format - phi, psy and theta being the Euler angles, vx, vy, and vz being the 
velocity in the Cartesian directions, battery and altitude being relatively self-
explanatory, and num_frames being the number of video frames processed to calculate 



the data, and ctrl_state representing various details about the state of the controller 
algorithm.!!
{	  
	  	  	  	  	  	  'phi':	  3,	  
	  	  	  	  	  	  ‘psi':	  3,	  
	  	  	  	  	  	  ‘num_frames':	  383,	  
	  	  	  	  	  	  ‘battery':	  50,	  
	  	  	  	  	  	  ‘altitude':	  221,	  
	  	  	  	  	  	  ‘ctrl_state':	  131072,	  
	  	  	  	  	  	  ‘vx':	  0.0,	  
	  	  	  	  	  	  ‘vy':	  0.0,	  
	  	  	  	  	  	  ‘vz':	  0.0,	  
	  	  	  	  	  	  ‘theta':	  7	  
}	  

Neural Representation"
The system is comprised of five Ensembles, each representing a different quantity in 
the brain, broken up into three categories: position (position vectors, or point 
coordinates), trajectory (a direction vector), and motor control (a vector of power levels 
to each motor).!

Position"
The first two hold the goal position and current position as three-dimensional vectors, 
comprised of 100 neurons with a radius of 10. The goal position is a simple static input 
read from a CSV file which is used to hold the path the quadcopter should take. The 
current position ensemble starts at (0, 0, 0) and begins to move with input from the 
quadcopter’s state information. Every time the state is polled, it returns a vector 
representing its velocity, which is multiplied by the time difference and added to the 
current state to represent the new position.!!
To hold the current state, an integrator connection was created to keep the value 
constant, changing only with the differential input. When this was introduced, the current 
position began to drift toward certain points due to attractor noise, but a modification of 
the transfer function was made to corrected this error, stabilizing the position from such 
drift error (see sub-section “Drifting” in the Implementation section, below).!

Trajectory"
The second two are tasked with calculating and holding the trajectory, or the vector 
leading from the current position to the goal position calculated by vector difference. 
Two ensembles are needed for calculating the difference; the first to combine the values 
into one vector, the second to find the difference between the two sections of that 
vector.!

Motor Control"
The last ensemble holds a vector containing four power ratios which will be sent to each 
motor. Through testing (see Implementation section, below) it was determined that the 



values range from 0 (motors off), to 500 (motors at highest power), with 250 being the 
“hovering power.” Thus, if all motors are set to 250, the quadcopter will hover in place.!!
The function to calculate the powers is based on the trajectory vector, and uses the 
positions of each motor to induce functions which will move the quadcopter in each 
cardinal direction. For example, to move in the positive z-direction, all motors should 
increase their power. The transformation function is described in more detail in the 
Implementation section, below.!

Design Specification"
As there are (unfortunately) no natural quad-rotor helicopter beings in nature, a search 
for studied properties of neural ensembles which make up a control system for quad-
rotor locomotion turned up no results. Even rotor-based propulsion as seen in 
helicopters are absent in nature, evolution having favoured flapping wings over spinning 
propellors. However, the flight characteristics which helicopters are favoured for (the 
ability to hover and free-flight in all three dimensions) are also desired by some animals 
in the wild. As such, there are some animals in the wild who have similar flight patterns 
to a quad-rotor copter, and can be used for inspiration towards a model for neural 
representation of a suitable control system. Each of these were investigated for 
specifications which could be used.!!
In general, the hippocampus is the area most associated with spatial cognition and 
navigation, so this project replicates a simplistic hippocampus made up of a fraction of 
the neurons in a typical animal. Common hippocampus neural types are place cells (for 
current location), head-direction cells (for point of view), grid cells (to locate 
environmental features in a hexagonal grid), and border cells (to denote divisions 
between environments) [5].!

Birds"
Birds were the first subject of inquiry, being the first thing brought to mind when “animals 
that fly” are considered. Neural representations of spatial position, orientation, and path 
have been characterized, and a variety of sensory systems are being used, each 
contributing a slightly-different representation in various settings. They have a strong 
sense of direction, even estimated to have a genetic sense of direction and distance for 
migratory patterns, so they can find winter breeding grounds without any previous 
experience [6]. Evidence from studies recording in homing pigeons indicated firing rates 
of 0 - 3Hz for place cells and 0 - 30Hz for path cells, with neurons highly localized to 
specific locations in the environment [7].!

Hummingbirds"
Hummingbirds have a very specific flight style, characterized by high-speed wing-
flapping and high precision, allowing for a variety of flight patterns. They have the ability 
to hover in place and dart around freely in three dimensions, very similarly to helicopters 
and quadcopters [8]. Their spatial representations have been studied and shown to be 
three-dimensional, albeit biased towards horizontal over vertical dimensions [9].!



Insects"
Dragonflies and damselflies are able to fly in a similar manner as hummingbirds, having 
the ability to hover and change velocity quickly and precisely. They also have multiple 
independent pairs of wings, which can be flapped independently from each other, giving 
them another characteristic which mirrors quadcopter flight dynamics [10].!

Implementation"
The neural implementation was done using the latest version of the Nengo software in 
Python [11]. Python was chosen for its development speed, easy manipulation of 
matrices and vectors through numpy, and large community of developers providing 
application libraries for a large variety of applications. It was also chosen due to the 
Parrot AR Drone having an avid hobbyist-programmer community, who have created a 
slew of libraries to connect and remotely control the drone, including several Python 
libraries [12] [13]. In the end, libardrone was chosen due to its proven effectiveness, 
open-source license, and small source code base.!!
While libardrone only had a unfinished implementation of a function which allowed for 
direct control of the four motors (bypassing the drone’s internal control system), 
development was undertaken to determine the parameters required and complete the 
functionality. It was found that the inputs take integers between 0 and 500 for power 
units, with the middle value of 250 being set to provide 1/4 of the force of gravity on the 
drone due to its mass. This way, if all four motors are set to 250, the drone hovers in 
place.!

Control Development"
Initial research was done to determine what would be necessary to control an unstable 
system such as a quadcopter for stable flight. The control algorithm in the onboard 
computer is complex and robust, incorporating data from different sensors to give a 
more accurate sense of its current position, velocity, angle, and what needs to be done 
to maintain a stable flight pattern [14].!!
While such a control system could be developed, a more simplistic controller was used 
to aid development, with the aim of increasing complexity if it was needed. It was also 
done in an attempt to see more directly the effect the neural representation would have 
on the quadcopter’s behaviour.!



Figure 2: The number system of the quadcopter’s engines.!!
To move to the left, the motors on the right side should increase their power and the 
motors on the left side should decrease their power. Similarly, to move forward the 
backwards motors should increase power and the forwards motors should decrease 
power. The function, taking in v as the vector trajectory.!!

f(v) = { vz + vx - xy, vz - vx - xy, vz + vx + xy, vz - vx + xy } !
Or, in code:! !
engines	  =	  [	  trajectory[2]	  +	  trajectory[0]	  -‐	  trajectory[1],	  
	  	  	  	  	  	  	  	  	  	  	  	  trajectory[2]	  -‐	  trajectory[0]	  -‐	  trajectory[1],	  
	  	  	  	  	  	  	  	  	  	  	  	  trajectory[2]	  +	  trajectory[0]	  +	  trajectory[1],	  
	  	  	  	  	  	  	  	  	  	  	  	  trajectory[2]	  -‐	  trajectory[0]	  +	  trajectory[1]	  ]	  !
While the amount each motor should move can be tuned to perfectly correspond to 
physical units, to keep the system simplest all tuning was left to the control algorithm. 
The motors will simply turn a position error (a nonzero trajectory between goal and 
current position) into power and move towards the goal at all times.!

Drifting"
To be able to view the performance of the controller, the neural representations were 
recorded to Comma-Separated Value (CSV) files, which were then plot in three 
dimensions using MATLAB. This allowed for a visualization of how the controller was 
performing. As can be seen in Figure 3 below, the initial implementation of the algorithm 
had a problem with drift in the current position representation!



Figure 3: The neural representation of the quadcopter’s current position with no input signal. Note the drift 
in all three dimensions. Temporally, it starts on the left and moves to stabilize at the bottom-right.!!

This was due to the integrator which was being used to store the quadcopter’s position; 
the sensors in the Parrot AR report velocity, which were multiplied by the elapsed time 
and integrated into the current position representation. The representation noise 
introduced local attractors into the representation, which the position would drift 
towards.!!
Unfortunately, this had a rather negative effect on the control algorithm, and introduced 
an error into the signal which the system attempted to correct. This caused the 
trajectory (and, correspondingly, the direction of the engine power) to drift accordingly, 

causing instability and crashing in a random direction every time the algorithm was run.!
Figure 4: The effect of the representation noise, introducing drift on the neural representations of the 

current position (and the trajectory, accordingly).!!
As can be seen in Figure 4, the desired position (in green) moves towards its input 
signal (the small red circle in the centre) and hovers near the area in a stable position. 
The current position (in blue), however, drifts diagonally towards the bottom-right of the 
figure before stabilizing at roughly (2.5, 1.8, 0), despite starting at (0, 0, 0) and having 
no input. The trajectory, shown in red, moves towards the opposite direction to 
compensate for the error and move the current position towards the actual goal.!!
It was assumed that the drift was due to the dynamics of the integrator connection, 
owing to its random direction and stabilization at an attractor point, so the transfer 



function was changed from f(x) = x to f(x) = τx - x. This compensated for the effect of 
the decoding on the signal, which fixed the drifting problem, as seen in Figure 5, below.!

Figure 5: The corrected current position circuit (in blue, stable at (0, 0, 0)) and the desired position and 
trajectory (in green and red, correspondingly).!

Turn Scaling"
Through the development process, it was found that much of the instability was due to 
highly aggressive turning, so a turn scaling parameter was introduced to allow for 
aggressive height manoeuvring but reduce the acceleration in the horizontal plane. This 
changed the transfer function to:!!

f(v) = { vz + αvx - αxy, vz - αvx - αxy, vz + αvx + αxy, vz - αvx + αxy } !
And, in code:!!
engines	  =	  [	  trajectory[2]	  +	  TURN_SCALING*trajectory[0]	  -‐	  TURN_SCALING*trajectory[1],	  
	  	  	  	  	  	  	  	  	  	  	  	  trajectory[2]	  -‐	  TURN_SCALING*trajectory[0]	  -‐	  TURN_SCALING*trajectory[1],	  
	  	  	  	  	  	  	  	  	  	  	  	  trajectory[2]	  +	  TURN_SCALING*trajectory[0]	  +	  TURN_SCALING*trajectory[1],	  
	  	  	  	  	  	  	  	  	  	  	  	  trajectory[2]	  -‐	  TURN_SCALING*trajectory[0]	  +	  TURN_SCALING*trajectory[1]	  ]	  !
When reduced, the difference in engine power was reduced correspondingly, giving an 
overall more stable flight path for a given trajectory. However, it did reduce the speed at 
which it was able to move in the horizontal plane, and required manual tweaking (or 
potentially optimization) to find a balance.!!!



!!!!!!
Figure 6: A comparison showing the difference in engine powers with a turn scaling of 1 (above) and 

0.001 (below). Note that the engine values themselves are between different trials, and aren’t just scaled.!

Filtering"
While the goal positions were particularly stable and slow-moving (the goal being 
stationary), the trajectory and engine power needed to be quick and responsive to 
respond to error and avoid instability. The filtering for the trajectory and engines were 
reduced to allow for more quick movement, resulting in more aggressive error 
correction.!

 



Results"!

Figure 7: The trajectory and engine power with the more stable constants used.!!
In the end, the quadcopter’s flight was only semi-stable, although able to hover and drift 
in a predictable trajectory. The problem of representation drift and accuracy amplified 
the problems involved in sustaining flight, but with tweaking of the filtering constants 
allowing for more high-frequency signal responses, the quadcopter’s behaviour was 
able to stay at least predictable. Unfortunately, at that point the representation noise 
levels were also raised, so the accuracy was sacrificed.!

Improvements"
In future iterations, separating different axes for representation would be an interesting 
avenue to consider, allowing for different filtering options in different directions similarly 
to the separation between goal and trajectory filters. This follows the biological 
constraints discussed in the design specification, with vertical resolution being lower 
than horizontal, to allow for more precise movement in the horizontal direction.!!
In addition, the complexity of the controller could be increased to give a stronger 
response to error. As it stands, the controller is proportional to the error, but a derivative 
or integral component could be added to give a more responsive signal - right now the 
motors rarely reach anywhere near full power, so there is room for improvement.!!



Conclusion"
Perhaps the most interesting part of the neural control algorithm is how much it 
resembled a traditional control algorithm, and suffers from similar problems, albeit low-
pass filtered and noisy. The problems of proportional control are still present in neural 
systems, however that indicates that the potential solutions of using more complex 
control systems (including derivative and integral control) are also viable.!!
Also interesting was the parallel between the natural world of hummingbirds and 
dragonflies and the very unnatural propulsion system of a quad-rotor helicopter. Where 
technology mimics nature, advantageous techniques from one can be used in another, 
so it is beneficial to study the natural world even in situations which may seem distinct.!!
The ultimate lesson to be learned from this project is that, while a simulated neural 
network is a complex and beautiful system, it is the learning and experience which is 
built on top of this which is where the true complexity of the brain lies. Not simply in the 
design of neurons and spike encoding or decoding, but in the actual weights of the 
connections, where the learning itself happens. That complexity, the subtleties of 
behaviour, is where instability can be managed and flight brought forth.!!
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Appendix A - Code"
nengoAR.py"
import	  nengo	  
import	  libardrone	  
import	  numpy	  
import	  csv	  
import	  time	  !
#	  This	  scales	  the	  velocity	  proportionally	  to	  the	  error.	  
#	  Remember,	  velocity	  saturates	  at	  0	  and	  500.	  
VELOCITY_SCALING	  =	  0.05	  !
#	  This	  scales	  the	  x-‐	  and	  y-‐	  turning	  velocity	  independently	  from	  the	  lift	  
#	  velocity.	  We	  don't	  care	  too	  much	  about	  lift	  and	  drop	  speed,	  but	  if	  it	  turns	  
#	  too	  fast	  in	  one	  direction,	  it	  gets	  more	  unstable.	  
TURN_SCALING	  =	  0.001	  !
POSITION_FILTER	  =	  0.2	  #	  A	  filter	  for	  the	  position	  signal	  values.	  
ENGINE_FILTER	  =	  0.03	  #	  A	  filter	  for	  the	  engine/trajectory	  signal	  values.	  !
MAX_SPEED	  =	  500;	  #	  Constant	  defined	  from	  the	  quadcopter	  itself.	  !
desiredfile	  =	  open('desired.csv',	  'wb')	  
desiredwriter	  =	  csv.writer(desiredfile)	  !
currentfile	  =	  open('current.csv',	  'wb')	  
currentwriter	  =	  csv.writer(currentfile)	  !
trajectoryfile	  =	  open('trajectory.csv',	  'wb')	  
trajectorywriter	  =	  csv.writer(trajectoryfile)	  !
enginesfile	  =	  open('engines.csv',	  'wb')	  
engineswriter	  =	  csv.writer(enginesfile)	  !
path	  =	  numpy.genfromtxt('path.csv',	  delimiter=',')	  !
SIMULATE	  =	  False	  !
if	  not	  SIMULATE:	  
	  	  	  	  #	  Connect	  to	  the	  quad	  and	  take	  off.	  
	  	  	  	  drone	  =	  libardrone.ARDrone()	  
	  	  	  	  drone.reset()	  !
#	  Quad	  position	  input.	  
def	  path_input(time,	  x):	  
	  	  	  	  for	  index,	  point	  in	  enumerate(path):	  
	  	  	  	  	  	  	  	  if	  len(path)	  >	  1	  and	  time	  >=	  min(path[index	  -‐	  1][3],	  0)	  and	  time	  <	  point[3]:	  
	  	  	  	  	  	  	  	  	  	  	  	  return	  point[:-‐1]	  !
	  	  	  	  #	  If	  we're	  at	  the	  end,	  stay	  at	  the	  last	  point.	  
	  	  	  	  return	  path[-‐1][:-‐1]	  !
def	  drone_state(time):	  
	  	  	  	  if	  not	  SIMULATE	  and	  drone.navdata.keys():	  
	  	  	  	  	  	  	  	  return	  [drone.navdata[0]['vx'],	  drone.navdata[0]['vy'],	  drone.navdata[0]['vz']]	  
	  	  	  	  else:	  



	  	  	  	  	  	  	  	  return	  [0,	  0,	  0]	  !
def	  send_motors(time,	  motor_values):	  
	  	  	  	  if	  not	  SIMULATE:	  
	  	  	  	  	  	  	  	  drone.manual(motor_values[0],	  motor_values[1],	  motor_values[2],	  motor_values[3])	  
	  	  	  	  engineswriter.writerow([motor_values[0],	  motor_values[1],	  motor_values[2],	  
motor_values[3]])	  
	  	  	  	  return	  motor_values	  !
def	  power(trajectory):	  
	  	  	  	  engines	  =	  numpy.array([	  trajectory[2]	  +	  TURN_SCALING*trajectory[0]	  -‐	  
TURN_SCALING*trajectory[1],	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  trajectory[2]	  -‐	  TURN_SCALING*trajectory[0]	  -‐	  
TURN_SCALING*trajectory[1],	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  trajectory[2]	  +	  TURN_SCALING*trajectory[0]	  +	  
TURN_SCALING*trajectory[1],	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  trajectory[2]	  -‐	  TURN_SCALING*trajectory[0]	  +	  
TURN_SCALING*trajectory[1]	  ])	  
	  	  	  	  engines	  =	  (engines*VELOCITY_SCALING)*MAX_SPEED	  +	  MAX_SPEED/2	  
	  	  	  	  engines	  =	  numpy.clip(engines,	  0,	  500)	  
	  	  	  	  return	  engines	  !
def	  printdesired(time,	  value):	  
	  	  	  	  desiredwriter.writerow(value)	  
	  	  	  	  return	  value	  !
def	  printcurrent(time,	  value):	  
	  	  	  	  currentwriter.writerow(value)	  
	  	  	  	  return	  value	  !
def	  printtrajectory(time,	  value):	  
	  	  	  	  trajectorywriter.writerow(value)	  
	  	  	  	  return	  value	  !
tau	  =	  0.1	  
def	  integrator(x):	  
	  	  	  	  return	  tau*x	  -‐	  x	  !
def	  difference(x):	  
	  	  	  	  return	  numpy.subtract(x[:3],	  x[3:])	  !
#	  Build	  our	  neural	  model.	  
model	  =	  nengo.Model('Nengo	  AR	  Brain')	  !
#	  Create	  input	  nodes	  representing	  the	  input	  and	  store	  it	  in	  an	  ensemble.	  
path_input	  =	  nengo.Node(output=path_input,	  size_in=3)	  
velocity_input	  =	  nengo.Node(output=drone_state,	  size_out=3)	  
motor_output	  =	  nengo.Node(send_motors,	  size_in=4)	  !
print_desired	  =	  nengo.Node(printdesired,	  size_in=3)	  
print_current	  =	  nengo.Node(printcurrent,	  size_in=3)	  
print_trajectory	  =	  nengo.Node(printtrajectory,	  size_in=3)	  !
desired_position	  =	  nengo.Ensemble(neurons=100,	  dimensions=3,	  radius=10)	  
current_position	  =	  nengo.Ensemble(neurons=100,	  dimensions=3,	  radius=10)	  
trajectory_difference_holder	  =	  nengo.Ensemble(neurons=200,	  dimensions=6,	  radius=10)	  
trajectory	  =	  nengo.Ensemble(neurons=300,	  dimensions=3,	  radius=10)	  
engine_power	  =	  nengo.Ensemble(neurons=500,	  dimensions=4,	  radius=500)	  !



#	  Store	  the	  other	  values	  in	  neurons.	  
nengo.Connection(path_input,	  desired_position,	  filter=POSITION_FILTER)	  
nengo.Connection(desired_position,	  print_desired,	  filter=POSITION_FILTER)	  !
#	  Integrate	  the	  velocity	  to	  get	  the	  current	  position.	  
nengo.Connection(velocity_input,	  current_position,	  filter=POSITION_FILTER)	  
nengo.Connection(current_position,	  current_position,	  function=integrator,	  
filter=POSITION_FILTER)	  
nengo.Connection(current_position,	  print_current,	  filter=POSITION_FILTER)	  !
#	  Trajectory	  is	  the	  difference	  between	  the	  desired	  and	  current	  position.	  
nengo.Connection(desired_position,	  trajectory_difference_holder,	  transform=[[1,	  0,	  0],	  [0,	  1,	  
0],	  [0,	  0,	  1],	  [0,	  0,	  0],	  [0,	  0,	  0],	  [0,	  0,	  0]],	  filter=POSITION_FILTER)	  
nengo.Connection(current_position,	  trajectory_difference_holder,	  transform=[[0,	  0,	  0],	  [0,	  0,	  
0],	  [0,	  0,	  0],	  [1,	  0,	  0],	  [0,	  1,	  0],	  [0,	  0,	  1]],	  filter=POSITION_FILTER)	  
nengo.Connection(trajectory_difference_holder,	  trajectory,	  function=difference,	  
filter=ENGINE_FILTER)	  
nengo.Connection(trajectory,	  print_trajectory,	  filter=ENGINE_FILTER)	  !
#	  Now	  translate	  the	  desired	  trajectory	  into	  engine	  power.	  
nengo.Connection(trajectory,	  engine_power,	  function=power,	  filter=ENGINE_FILTER)	  
nengo.Connection(engine_power,	  motor_output,	  filter=ENGINE_FILTER)	  !
#	  Create	  our	  simulator	  
sim	  =	  nengo.Simulator(model)	  
sim.run(5)	  !
if	  not	  SIMULATE:	  
	  	  	  	  drone.manual(0,	  0,	  0,	  0)	  
	  	  	  	  drone.halt()	  

plot_route.m"
current	  =	  csvread('current.csv');	  
desired	  =	  csvread('desired.csv');	  
trajectory	  =	  csvread('trajectory.csv');	  
path	  =	  csvread('path.csv');	  
engines	  =	  csvread('engines.csv');	  !
figure;	  
hold	  all;	  
plot3(current(:,	  1),	  current(:,	  2),	  current(:,	  3));	  
plot3(desired(:,	  1),	  desired(:,	  2),	  desired(:,	  3));	  
plot3(path(:,	  1),	  path(:,	  2),	  path(:,	  3),	  'rO');	  
plot3(trajectory(:,	  1),	  trajectory(:,	  2),	  trajectory(:,	  3));	  
legend('Current	  Position',	  'Desired	  Position',	  'Actual	  Goal',	  'Trajectory');	  
title('Goal	  Planning');	  
xlabel('x');	  
ylabel('y');	  
zlabel('z');	  
view(14,	  -‐14);	  !
figure;	  
subplot(2,	  1,	  1);	  
plot(engines);	  
title('Engine	  Power');	  
legend('Engine	  1',	  'Engine	  2',	  'Engine	  3',	  'Engine	  4');	  
subplot(2,	  1,	  2);	  
plot(trajectory);	  



title('Trajectory');	  
legend('x',	  'y',	  'z');	  
xlabel('Time	  (sample	  index)');	  
ylabel('Distance	  (m)');


